Applying Co-Evolutionary Particle Swarm Optimization to the Egyptian Board Game Seega

نویسندگان

  • Ashraf M. Abdelbar
  • Sherif Ragab
  • Sara Mitri
چکیده

Seega is an ancient Egyptian two-phase board game that, in certain aspects, is more difficult than chess. The two-player game is played on either a 5 × 5, 7 × 7, or 9 × 9 board. In the first and more difficult phase of the game, players take turns placing one disk each on the board until the board contains only one empty cell. In the second phase players take turns moving disks of their color; a disk that becomes surrounded by disks of the opposite color is captured and removed from the board. We have developed a Seega program that employs co-evolutionary particle swarm optimization in the generation of feature evaluation scores. Two separate swarms are used to evolve White players and Black players, respectively; each particle represents feature weights for use in the position evaluation. Experimental results are presented and the performance of the full game engine is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-Evolutionary Particle Swarm Optimization Applied to the 7x7 Seega Game

Seega is an ancient Egyptian two-stage board game that, in certain aspects, is more difficult than chess. The twoplayer game is most commonly played on a 7 × 7 board, but is also sometimes played on a 5 × 5 or 9 × 9 board. In the first and more difficult stage of the game, players take turns placing one disk each on the board until the board contains only one empty cell. In the second stage pla...

متن کامل

Evolutionary swarm neural network game engine for Capture Go

Evaluation of the current board position is critical in computer game engines. In sufficiently complex games, such a task is too difficult for a traditional brute force search to accomplish, even when combined with expert knowledge bases. This motivates the investigation of alternatives. This paper investigates the combination of neural networks, particle swarm optimization (PSO), and evolution...

متن کامل

Mix proportioning of high-performance concrete by applying the GA and PSO

High performance concrete is designed to meets special requirements such as high strength, high flowability, and high durability in large scale concrete construction. To obtain such performance many trial mixes are required to find desired combination of materials and there is no conventional way to achieve proper mix proportioning. Genetic algorithm is a global optimization technique based ...

متن کامل

A Particle Swarm Optimization Based on Evolutionary Game Theory for Discrete Combinatorial Optimization

This paper presented a new particle swarm optimization based on evolutionary game theory (EPSO) for the traveling salesman problem (TSP) to overcome the disadvantages of premature convergence and stagnation phenomenon of traditional particle swarm optimization algorithm (PSO). In addition ,we make a mapping among the three parts discrete particle swarm optimization (DPSO)、 evolutionary game the...

متن کامل

PSO Algorithm for IPD Game

Mechanisms promoting the evolution of cooperation in two-player, two-strategy evolutionary games have been discussed in great detail over the past decades. Understanding the effects of repeated interactions in multi-player with multi-choice is a formidable challenge. This paper presents and investigates the application of co-evolutionary training techniques based on particle swarm optimization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003